Neutron stars – the dead stellar remnants of old, burned-out stars – are some of the most extreme objects in the universe. They weigh as much as the entire Sun, but are small enough to fit into downtown Sydney, and they rotate up to 700 times every second. Imagine that: a whole star rotating faster than the fastest kitchen blender.
Astronomers know of a few thousand neutron stars, but one in particular is a stand-out. As part of the Parkes Pulsar Timing Array, we have been observing pulsar J1909-3744 with the CSIRO’s Parkes Radio Telescope for 11 years.
During this time, we have accounted for every single one of the neutron star’s 116 billion rotations (115,836,854,515, to be precise). We know the rotational period of this star to 15 decimal places, making it truly one of the most accurate clocks in the universe.
But, as we show in a paper published today in the journal Science, it was not supposed to be this way. Gravitational waves from all of the black holes in the universe were supposed to ruin the timing precision of this pulsar. But they have not.
