Is Anything Truly Random or Is There an Underlying Order to Everything?

In modern physics, certain quantum processes are deemed fundamentally random. But are they for sure?
Is Anything Truly Random or Is There an Underlying Order to Everything?
Molodec/Shutterstock
Tara MacIsaac
Updated:

The Dutch philosopher Baruch Spinoza (1632–1677) wrote in “Ethics I”: “Nothing in Nature is random. ... A thing appears random only through the incompleteness of our knowledge.” 

In modern physics, certain quantum processes are deemed fundamentally random.

As we currently understand it, quantum randomness is true and absolute randomness,“ said theoretical physicist York Dobyns in an email to the Epoch Times. ”Nothing in the universe can predict quantum outcomes except at a statistical level.”

Put simply, things are considered fundamentally fuzzy or indeterminate in quantum theory. A particle may behave as a wave; Heisenberg’s uncertainty principle states that we have a limited ability to know more than one physical property of a particle (such as position and momentum) at the same time; radioactive decay is unpredictable, it results from a particle quantum tunneling into or out of the nucleus. 

As far as physicists can tell, quantum mechanics includes true randomness. But Spinoza may still be right.

Uncertain Footing of Quantum Theory’s Uncertainties

Dobyns admitted that it is possible even quantum randomness is not truly random. If that is so, quantum theory would have to be majorly reworked.

Physicists expect such a reworking. Quantum theory has major gaps and scientists are seeking a new major theory to replace or complement it. 

Science is torn between classical physics and quantum physics. Each holds true in certain circumstances, but neither can explain how everything works. 

“Current quantum theory can and will be replaced if a better theory (one that explains more) can be devised, and a theory that can make accurate predictions of events that are random according to the current version of QM [quantum mechanics] would be a great candidate,” Dobyns said. 

If quantum theory is replaced by a so-called “Theory of Everything,” the idea of randomness may also disappear. No theory that can predict random quantum events has been proposed, so for now we must assume they are truly random.

Random Number Generators

Machines called random number generators (RNGs) use the quantum processes to generate encryption keys for banks. They are also used as tools for various scientific experiments.