Scientists have made synthetic structures out of DNA or protein before. Now, a team has created nanowires from a combination of the two.
The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago.
For example, synthetic structures made of DNA could one day be used to deliver cancer drugs directly to tumor cells, and customized proteins could be designed to specifically attack a certain kind of virus. Combining the two molecule types into one biomaterial opens the door to numerous applications.
A paper describing the so-called hybridized, or multiple component, materials appears in Nature.
There are many advantages to multiple component materials, says first author Yun (Kurt) Mou. “If your material is made up of several different kinds of components, it can have more functionality. For example, protein is very versatile; it can be used for many things, such as protein–protein interactions or as an enzyme to speed up a reaction. And DNA is easily programmed into nanostructures of a variety of sizes and shapes.”
Building Something New
But how do you begin to create something like a protein–DNA nanowire—a material that no one has seen before?
Mou and his colleagues in the laboratory of Stephen Mayo, a professor of biology and chemistry, began with a computer program to design the type of protein and DNA that would work best as part of their hybrid material.
“Materials can be formed using just a trial-and-error method of combining things to see what results, but it’s better and more efficient if you can first predict what the structure is like and then design a protein to form that kind of material,” he says.
The researchers entered the properties of the protein–DNA nanowire they wanted into a computer program developed in the lab; the program then generated a sequence of amino acids (protein building blocks) and nitrogenous bases (DNA building blocks) that would produce the desired material.